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The self-excited vibration that occurs between a stationary Electromagnetic Suspension

(EMS) maglev vehicle and a girder is a practical problem that greatly degrades the

performance of a maglev system. As of today, this problem has not been fully solved. In

this article, the principle underlying the self-excited vibration problem is explored, and

role in the initiation of the self-excited vibration. To suppress the self-excited vibration,

a scheme applying a tuned mass damper (TMD) to the maglev girder is proposed, and

the stability of the combined system is analyzed. Furthermore, a novel concept of a

virtual TMD is introduced, which uses an electromagnetic force to emulate the force of a

real TMD acting on the girder. However, in the presence of the time delay caused by the

inductance of the electromagnets, the stability analysis of the levitation system

combined with the virtual TMD becomes complex. Analysis of the stability shows that

there exist some repeated time delay zones within which the overall system is stable.

Based on this rule, time delay control is introduced to stabilize the system with a virtual

TMD, and a procedure to determine the optimal time delay and gain is proposed.

Numerical simulation indicates that the proposed virtual TMD scheme can significantly

suppress the self-excited vibration caused by one unstable vibration mode, and is

suitable for application to EMS maglev systems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The maglev train is a novel guideway transportation system that is currently under rapid development around the
world. Compared with conventional railway systems, the maglev system has the advantages of low noise and high speed,
since there is no mechanical contact between the vehicle and the guideway, which makes the maglev system suitable for
long distance as well as urban transportation. Until today, two commercial maglev routes, as well as several test routes,
have been established around the world [1]. Among these routes, most of them are the Electromagnetic Suspension
(EMS) type.

The EMS maglev system uses electromagnetic attractive forces to neutralize the gravity of the vehicle, and active
control is required to stabilize the suspension system around a desired suspension gap because the magnetic attraction
suspension by itself is inherently unstable. As a result, coupled vibration problems associated with the vehicle and
guideway in an EMS maglev system are more complex than those that occur in a conventional railway system. Recently,
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a comprehensive review of the coupled vibration problems in EMS maglev systems has been done by Zhou et al. [2]. They
classified coupled vibration problems into three categories: stationary vehicle–guideway self-excited vibration, moving
vehicle–bridge coupled vibration, and vehicle–guideway interaction caused by track irregularities. The stationary vehicle–
guideway self-excited vibration is a unique phenomenon that occurs only in EMS maglev systems, and it can be further
divided into two subclasses: stationary electromagnet–track self-excited vibration and stationary vehicle–bridge self-
excited vibration. The moving vehicle–guideway coupled vibration problem has been extensively studied by Yau [3,4];
however, relatively little attention has been paid in the literature to the stationary vehicle–guideway self-excited vibration
problem, which occurs when the EMS maglev vehicle is suspended above an elevated girder without moving, and which is
the subject of concern in this paper.

It has been observed that when the self-excited vibration occurs, the amplitude of the vertical vibration of the girder
grows with time until the electromagnets clash with the surface of the track, leading to a levitation failure. This problem
greatly degrades the performance of the maglev system and is unacceptable for a commercial maglev system, since it
hinders the vehicle from stopping at an arbitrary location along the route. For example, She et al. [5] pointed out that the
TR08 high speed maglev vehicle on the Shanghai maglev demonstration line had experienced violent coupled vibration
while the vehicle was crossing a turnoff at a very low speed. Their research indicates that the parameters of the girder,
including its first-order natural frequency and damping ratio, play an important role in the stability of the coupled
vibration problem.

Albert et al. [6] pointed out that the American Maglev Technologies (AMT) system achieved successful levitation in
Florida on a guideway mounted to the earth on a concrete foundation, but later encountered difficulties in achieving stable
levitation when the vehicle was moved to a guideway installed on the Old Dominion University campus. It was believed
that the flexibility of the guideway on the Old Dominion University campus, which employed 90-feet long, essentially
simply supported elevated girders, was the main reason that contributed to the difficulties of achieving a stable levitation.

Yet as of today, to the authors’ knowledge, no control method that can solve the stationary self-excited vibration
problem in a real maglev system has been reported. The purpose of the research reported here is to develop a vibration
control method that is capable of eliminating the self-excited vibration and is applicable to a real maglev system.

The tuned mass damper (TMD) has been widely used to reduce the vibration of flexible structures. Its application to
bridges for the purpose of reducing the vibration caused by moving vehicles has been extensively discussed [7,8]. It has
been shown that if the parameters of the TMD are well tuned, the performance of the TMD is excellent. However, the
application of a TMD to a maglev girder for the purpose of suppressing the stationary vehicle–girder self-excited vibration
has not yet been reported in the literature. The feasibility and stability of this application is considered in this paper.

Recently, the virtual vibration absorber, which uses an actuator to emulate the force of a real TMD, has been introduced
by Wu and Shao [9] and Wu et al. [10,11]. In their research, the stiffness of the virtual TMD was tuned online by an
adaptation algorithm that managed to keep the phase error between the acceleration of the primary body and the
displacement of the virtual mass within a desired range. The feasibility of this scheme had been verified by both simulation
and experiments. This concept is also suitable for application to EMS maglev systems, since the electromagnets in an EMS
maglev vehicle, by themselves, are excellent actuators. Yet the stability problem associated with using a virtual TMD needs
to be investigated, and an adaptive algorithm to tune the parameters of the TMD needs to be developed and this is the
focus of the current paper.

When the force of a real TMD is emulated by an electromagnetic force, some special characteristics need to be taken
into account. A factor that greatly affects the stability of the system is the time delay caused by the dynamics of the
electromagnets. Generally, the inductance of an electromagnet in a low speed maglev train can be up to 0.1 H and it varies
with the levitation gap and track materials; therefore, the time delay between the input voltage and the output attraction
force should not be neglected in the implementation of a virtual TMD. It is well known that a time delay may decrease the
stability margin of a closed loop control system or even cause the system to become unstable. Wang et al. [12] investigated
the magnetic levitation system with delayed gap feedback control, and showed that as the time delay in the gap feedback
path exceeds a critical value, a pair of complex poles cross the imaginary axis, and the stability of the levitation system may
change through a Hopf bifurcation. Hence, compensation for actuation time delay in the maglev system is essential for the
successful application of the virtual TMD.

To minimize the influence resulting from the time delay associated with the actuator, some compensation methods
have been proposed by others. For example, the time delay of hydraulic actuators has been taken into account in the
vibration control of a building under seismic excitation [13,14]. A general compensation method used in this problem is to
predict the displacement, x1, of the actuator after a specified time delay t, and then compute the current control signal
using the predicted displacement x1. Here, t equals the time delay of the actuator, which is a constant in their study [13].
Since the time delay exists in the actuation, following the time delay t, the resulting displacement of the actuator, x1

0,
should be almost identical to the predicted displacement x1. A neural network controller of a vibration reduction system
for a tall building was proposed by Nikzad et al. [14]. The neural network was trained in a laboratory setup before it was
put into use. Experimental comparison of the proposed neural network method and the conventional feedforward
controller (which was generally made up of two first-order phase lead compensators) showed that the neural network
controller performed better in compensating for actuation time delay than the feedforward controller did. The neural
network is also adopted by Dong et al. [15] to compensate the uncertain time delay of the magneto-rheological dampers of
car suspension systems. However, neither the phase lead compensator nor the neural network compensator is suitable for
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use in compensating the actuation force lag in a maglev train—the phase lead compensators are easy to apply but can only
provide limited phase compensation over a limited frequency band; the neural network may provide adequate phase
compensation if well trained, but the success of the training process greatly depends on the extent of the experiences that
the network is exposed to during the training period, and is computationally expensive.

In this study, the virtual TMD scheme is applied, for the purpose of suppressing the maglev vehicle–girder self-excited
vibration. To neutralize the effect of the actuation time delay, an additional time delay, t1, is introduced in the virtual TMD
feedback paths. Together with the actuation time delay, t0, if the overall time delay, t0+t1, equals one or more cycles of
vibration, the additional electromagnetic force will be in phase with the estimated TMD force; thus, the vibration will be
suppressed. The stability of this scheme is investigated here and it will be shown that there exist a series of time delay
intervals within which the additional time delay can be chosen to stabilize the coupled system. The advantage of this
scheme is obvious: the time delay of the actuator can be used as part of the control delay and it is insensitive to noise and
external disturbances. The proposed vibration control scheme provides a method to analyze the stability of the vehicle–
girder coupled system, as well as a solution to solve the stationary self-excited vibration problem.

The reminder of this article is organized as follows: First, the models of the magnetic levitation system as well as the
flexible maglev girder are established, and the stability of the coupled system is analyzed in Section 2. In Section 3, the
application of the TMD to a maglev girder is introduced, and the stability of the coupled system together with the TMD is
investigated. The realization of the virtual TMD is presented in Section 4, in which the actuation time delay issue and
its affect on the stability of the closed loop system are discussed. Based on the discussion, the time delay control strategy is
introduced, and a procedure to determine the optimal time delay and gain is proposed. To verify the effectiveness of the
procedure, a numerical simulation is conducted in Section 5, followed by a brief conclusion in Section 6.
2. Stability analysis of the electromagnet–girder coupled system

2.1. Modeling of the magnetic levitation system and the flexible girder

For an actual maglev vehicle, the magnetic levitation system consists of several bogies, with each bogie supported by at
least four electromagnets. A side view of the CMS-03A low speed maglev vehicle is shown in Fig. 1(a), from which it can be
seen that the weight of the car body is supported by four bogies, with each bogie consisting of eight electromagnets (four
on each side); therefore, there are a total of 32 electromagnets in the vehicle. Each pair of adjacent electromagnets is
controlled by one controller; thus, there are a total of 16 levitation units in a single vehicle. As the levitation unit is the
basic element of the maglev vehicle, solving the stability problem of a single levitation unit-girder coupled system is
Girder
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Fig. 1. Schematic of the electromagnetic levitation system: (a) side view of the CMS03A low speed EMS maglev vehicle and (b) simplified electromagnet–

girder coupled model.
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essential to ensure the stability of the vehicle–girder coupled system. Without loss of generality, several assumptions are
made when developing the dynamic model of the maglev vehicle:
(a)
 The levitation units are mechanically decoupled by the bogie and the stability of one levitation unit is not affected by
other levitation units.
(b)
 The secondary suspension system of the vehicle can be neglected in the analysis, since the air springs isolate the
vibration of the levitation system from the car body.
(c)
 The girder in a maglev route is generally simply supported, and it can be modeled as a Bernoulli–Euler beam, because
in most cases the length of the girder is large compared with other dimensions and the deflections of the bridges are
small compared with their length.
(d)
 The length of the electromagnet can be neglected when compared with the span length of a maglev girder; the
nonlinearity of the girder response is not considered because the amplitude of the vibration is generally quite small
(several millimeters) compared with the span length of a girder (typically 18 or 24 m, or even longer) and is thus well
below the amplitude at which nonlinear effects would be significant.
The schematic of a single levitation unit-girder coupled system is shown in Fig. 1(b), in which the electromagnet is
simplified as a lumped mass, m1. Let N denote the number of turns of a single electromagnet, and suppose that the area of
the magnetic pole is A, the space permeability is m0, and the gap between the electromagnet and the lower surface of the
steel track is d. Referring to Fig. 1(b), it can be seen that d¼ ym�y0. Then the magnetic flux through the U-shaped iron core
of the electromagnet, f, is given by

f¼
m0ANiðtÞ

2dðtÞ
, (1)

where i(t) is the current through the coil of the electromagnet. A levitation unit consists of two electromagnets in series;
therefore, for a single electromagnet, the relationship between the control voltage u and the current i can be described as

uðtÞ

2
¼ iðtÞRþN

dfðtÞ
dt

, (2)

where R is the direct current (DC) resistance of a single electromagnet. Substituting Eq. (1) into Eq. (2), yields:

uðtÞ

2
¼ iðtÞRþ

m0AN2

2dðtÞ
_iðtÞ�

m0AN2iðtÞ

2d2
ðtÞ

_dðtÞ: (3)

It can be shown that the electromagnetic force, Fm, generated by the two electromagnets is given by [3,4,12]

FmðtÞ ¼
m0AN2

2

iðtÞ

dðtÞ

� �2

: (4)

Therefore, the motion of the electromagnet can be expressed as follows:

m1
d2ym

dt2
¼�FmðtÞþm1g: (5)

Here g is the acceleration due to gravity. Combining Eqs. (4) and (5), the steady-state current (when the term in the left
hand side of Eq. (5) equals zero) can be obtained as

i0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1gz2

0

m0AN2

s
: (6)

An additional controlling force should be applied to stabilize the levitation system since the magnetic levitation system
by itself is inherently unstable. Here, the widely applied PD controller [2] is adopted, which gives:

ieðtÞ ¼ kp½dðtÞ�z0�þkd _ymðtÞ, (7)

where z0 is the desired levitation gap, which is a constant in most cases; ie is the desired current, and kp and kd are the
proportional and derivative control coefficients, respectively. Eq. (7) is an ideal control law. Taking the inductance of the
electromagnets into account, a proportional control law can be applied to adjust the control voltage and to approximately
generate the desired control current:

uðtÞ ¼ kc½ieðtÞ�iðtÞ�, (8)

where kc is the proportional control coefficient. This control scheme not only minimizes the lag of the responding current,
but also provides a relatively clear physical meaning—the output of the PD controller is the desired control current through
the electromagnets, which also provides facilities for combining a virtual TMD into the closed control system. This will be
demonstrated in the following sections.

Suppose that the span length of the girder is L, the mass per unit length and the bending stiffness of the bridge are r and
EI, respectively, and the displacement of the girder is y(x,t). Then the motion of the girder can be described by the following
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differential equation:

EI
@4yðx,tÞ

@x4
þr @

2yðx,tÞ

@t2
¼ f ðx,tÞ, (9)

where f(x,t) is the external force acting on the girder, which can be approximately described as

f ðx,tÞ ¼ FmðtÞdðx�x0Þ, (10)

where x0 is the location of the electromagnet, and d( � ) is the Dirac delta function. For a simply supported girder, the
displacement of the girder can be described as a superposition of sinusoidal functions:

yðx,tÞ ¼
X1
n ¼ 1

ynðtÞsin
npx

L
: (11)

Substituting Eq. (11) into Eq. (9), multiplying both sides of the resultant equation by sin(npx/L), and integrating both
sides from 0 to L, gives:

€ynðtÞþo2
nynðtÞ ¼

2Fm

rL
sin

npx0

L
, n¼ 1,2,. . ., (12)

where

on ¼
np
L

� �2
ffiffiffiffiffiffi
EJ

rL

s
: (13)

Eq. (12) can be interpreted as a series of dynamic equations for single degree of freedom (sdof) mass–spring resonators.
The equivalent mass of the nth mass–spring resonator is

mn ¼
rL

2
csc

npx0

L
: (14)

Here, csc( � ) is the cosecant function. Consequently, the equivalent stiffness of the sdof resonator can also be obtained,
which is

kn ¼
EJ

2

np
L

� �4

csc
npx0

L
: (15)

By analogy to the sdof system, the mechanical impedance of the nth vibration mode of the girder can be defined as

Zn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
knmn

q
¼

ffiffiffiffiffiffiffiffiffiffi
EJrL

p
2

np
L

� �2

csc
npx0

L
Z

ffiffiffiffiffiffiffiffiffiffi
EJrL

p
2

np
L

� �2

: (16)

It can be seen that the mechanical impedance is proportional to n2, which implies that the higher the order of the
vibration mode, the larger will be the mechanical impedance, and thus a smaller response will occur for the same external
excitation force. Therefore, the higher order vibration modes are not easily excited, which coincides with the observation in
practice that the self-excited vibration always occurs at a frequency corresponding to either the fundamental resonant
mode of a girder or the first harmonic.

According to Eq. (11), the displacement of the girder at the location where the electromagnet is levitating can be
obtained as

y0ðtÞ ¼ yðx0,tÞ ¼
X1
n ¼ 1

ynðtÞsin
npx0

L
: (17)

Inspections of Eqs. (12) and (17) reveal that the girder can be modeled as a series of undamped sdof mass–spring
resonators of different but related resonance frequencies, with each resonator corresponding to a particular vibration mode
of the girder. Therefore, the stability of the electromagnet–girder coupled system can be investigated by separately
examining the stability of each sdof resonator–electromagnet coupled system. If all the sdof resonator–electromagnet
coupled systems are stable, the overall system is stable; otherwise, if one of them is unstable, the overall system is
unstable, and self-excited vibration will occur.

Based on practical considerations, the first-order mode of the girder is examined here. The location of the electromagnet
is chosen as L/2, which corresponds to the worst case since when x0=L/2, the mechanical impedance, Z1, reaches its
minimum value. Under these assumptions, the displacement of the girder at x=L/2 is

y0ðtÞ ¼ y1ðtÞ (18)

and the dynamic equation of the girder, described by Eq. (12), becomes

€y0ðtÞþo2
1y0ðtÞ ¼

2FmðtÞ

rL
(19)

or

m0 €y0ðtÞþk0y0ðtÞ ¼ FmðtÞ, (20)
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where m0 and k0 is the equivalent mass and stiffness of the first-order vibration mode, and m0 ¼m1 ¼ rL=2,
k0 ¼ k1 ¼ ðEI=2Þðp=LÞ4.

Combining Eq. (20) with Eqs. (3)–(5) and (7)–(8), the dynamic behavior of the closed loop system can be determined.
When examining the stability of the coupled system around the equilibrium point, the linearized model can be applied to
simplify the analysis without introducing noticeable errors. The linearized model is given by

u¼ kpkcðym�y0�z0Þþkdkc _ym

L0
_i ¼ u=2�iRþFið _ym� _y0Þ

Fm ¼ 2ðFii�Fzðym�y0ÞÞ

m1 €ymþFm ¼ 0

m0 €y0þk0y0 ¼ Fm

;

8>>>>>>><
>>>>>>>:

(21)

where

L0 ¼
m0AN2

2z0
, Fi ¼

m0AN2i0
2z2

0

, Fz ¼
m0AN2i20

2z3
0

:

2.2. Stability analysis of the coupled system

The coupled system described by Eq. (21) can be decomposed into two subsystems in a negative feedback
interconnection as shown in Fig. 2: the levitation system, G0(s), and the sdof mass–spring system, H(s). G0(s) is defined as
the transfer function between the electromagnetic force acting on the girder and the excitation, v0. Here, s is the Laplace
operator, and v0 is the vertical velocity of the girder at location x0, which equals _y0and is positive when the girder is moving
downwards. Since the electromagnetic force, Fm, is equal in strength to the force acting on the girder, but is opposite in
direction, the output of G0(s) is –Fm. H(s) is defined as the transfer function between the responding velocity of the girder
and the excitation force acting on it. In the model, Fd is the external force disturbances acting on the girder, such as the
wind induced disturbance and the levitation forces produced by other levitation units. The negative feedback in the loop
indicates that the nominal direction of the electromagnetic force, Fm, is opposite in direction to the force acting on the
girder.

According to Fig. 2 and Eq. (21), and using v0 ¼ _y0, the transfer function of G0(s) can be deduced using the first four
equations in Eq. (21):

G0ðsÞ ¼�
FmðsÞ

v0ðsÞ
¼

Zm1s

m1L0s3þm1Rs2þFikckdsþZ
(22)

and H(s) can be obtained from the last equation of Eq. (21)

HðsÞ ¼
v0ðsÞ

F0ðsÞ
¼

s

m0s2þk0
, (23)

where R¼ Rþkc=2, and Z¼ Fikckp�2FzR, which are both constants. It is a basic requirement that the levitation system by
itself is stable, namely, all the eigenvalues of the system described by Eq. (22) must have negative real parts, which
requires that m1RFikckd4m1L0Z, and Z40. Therefore, the requirements for the control parameters are: kckd4 ðZL0=FiRÞ

and kckp4ð2FzR=FiÞ.
The characteristic polynomial of the coupled system is

DðsÞ ¼ 1þG0ðsÞHðsÞ, (24)

which can be rewritten using Eqs. (22) and (23) as

DðsÞ ¼m0m1L0s5þm0m1Rs4þðm1L0k0þFikckdm0Þs
3þ½k0m1RþZðm0þm1Þ�s

2þFik0kckdsþZk0: (25)
0v mF

0F dF
H s

0G s

Fig. 2. Block diagram of the closed loop system. It can be divided into two subsystems.



Table 1
Routh array of the closed loop system.

s5 m0m1L0 m1L0k0þFikckdm0 Fik0kckd

s4
m0m1R k0m1RþZðm0þm1Þ Zk0

s3 a1 a2 0

s2 b1 Zk0

s g1 0

1 Zk0
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The stability of the coupled system can be investigated by using the Routh stability criterion, and the corresponding
Routh array is listed in Table 1. The terms in Table 1 are:

a1 ¼
Fikckdm0R�ZL0ðm0þm1Þ

R
,

a2 ¼
Fikckdk0R�ZL0k0

R
,

b1 ¼
Z½ZL0ðm0þm1Þ

2
�RðFikckdm0ðm0þm1Þ�k0L0m2

1Þ�

ZL0ðm0þm1Þ�Fikckdm0R
,

g1 ¼
k0m1 ZL0ðFikckdðm0þm1Þ�k0L0m1ÞþFikckdRðk0L0m1�Fikckdm0Þ

� �
ZL0ðm0þm1Þ

2
�R½Fikckdm0ðm0þm1Þ�k0L0m2

1�
:

The requirement for a stable closed loop is that all the elements in the first column of the Routh array are positive; or
alternatively, four conditions must be met:
(1)
 a140, this requires:

kckd4
ZL0ðm0þm1Þ

Fim0R
; (26)

b140, which requires:
(2)
kckd4
L0½Rk0m2

1þZðm0þm1Þ
2
�

Fim0Rðm0þm1Þ
; (27)

g140, which can be satisfied only when:
(3)
k0

m0
o

Fikckd

m1L0

Fikckdm0R�ZL0ðm0þm1Þ

Fikckdm0R�ZL0m0

o
Fikckd

m1L0
; (28)

Zk040, which implies
(4)
Fikckp�2FzR40: (29)
It can be seen that Eqs. (26), (27) and (29) are the requirements for the control parameters of the coupled levitation
system, which are stricter than those for the uncoupled levitation system. Letting s= jo, gives:

Re G0ðjoÞ½ � ¼
m1Zo2ðFikckd�m1L0o2Þ

ðZ�m1Ro2Þ
2
þo2ðFikckd�m1L0o2Þ

2
, (30)

Im G0ðjoÞ½ � ¼
m1ZoðZ�m1Ro2Þ

ðZ�m1Ro2Þ
2
þo2ðFikckd�m1L0o2Þ

2
, (31)

where Re[ � ] and Im[ � ] represent the real and imaginary part of the transfer function, respectively. It can be verified that
when o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fikckd=m1L0

p
, Re[G0(jo)]=0, and Im[G0(jo)]o0. This implies that +G0 joð Þ ¼�p=2 when o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fikckd=m1L0

p
.

Under the assumption that all the control parameters are chosen following the requirements of Eqs. (26), (27) and (29),
G0(s) is a stable and minimum phase system with all its poles in the left half s plane. Referring to Eq. (22), it can be
concluded that as o increases from zero to infinity, the phase of G0(jo) varies within the limits (–p, p/2). Defining oc as the
critical frequency of the levitation system at which+G0 joð Þ ¼ �p=2 allows the following to be written:

oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fikckd

m1L0

s
: (32)

For an sdof resonator, it can be easily shown that k0=m0 ¼o2
1; therefore, Eq. (28) implies that when the natural

frequency of the sdof resonator is higher than the critical frequency of the levitation system, the coupled system becomes
unstable and self-excited vibration occurs. This is a sufficient condition for the occurrence of the self-excited vibration, and
this conclusion can also be proven using the Nyquist criterion. If o14oc , according to Eq. (22), it can be verified that
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+G0 jo1ð Þ 2 �p,�p=2
	 


. Since

+HðjoÞ ¼

p
2

ðooo1Þ

�
p
2
ðo4o1Þ

,

8><
>: (33)

then +G0Hðjo�1 Þ 2 ð�p=2,0Þ, and +G0Hðjoþ1 Þ 2 ð�3p=2,�pÞ.
On the other hand, Eq. (23) implies that limo-o1

9HðjoÞ9¼1; therefore, limo-o1
9G0HðjoÞ941, which indicates that the

gain of the open loop system is greater than 1 when its phase shift equals –p. As can be seen, the open loop system,
represented by G0H(s), is minimum phase; thus, it can be concluded that the closed loop system is unstable.

In the discussion above, only the first-order vibration mode of the girder is included. Using the same methodology, it
can be shown that higher order vibration modes of the girder may also cause the self-excited vibration problem only if
their resonance frequencies are higher than the critical frequency of the levitation system. This is an interesting conclusion
since higher order modes of the girder can always be found whose resonance frequencies are higher than the critical
frequency of the levitation system. This leads to another conclusion: self-excited vibration will always occur for the
electromagnet–girder coupled system. This is true if the damping of the girder is neglected in the girder model. However,
in the presence of girder damping, the condition limo-o1

9HðjoÞ9¼1 does not hold anymore; thus, self-excited vibration
may not occur even if the modal resonance frequency is higher than the critical frequency of the levitation system. To
demonstrate the effect of damping, suppose that the damping ratio of the nth vibration mode is zn, so the dynamic
equation of the girder, Eq. (12), becomes

€ynðtÞþ2znon _yðtÞþo2
nynðtÞ ¼

2Fm

rL
, n¼ 1,2,. . . (34)

Here, x0=L/2. For the nth mode, H(s) can be obtained by Eq. (34) using the Laplace transform:

HðsÞ ¼
synðsÞ

FmðsÞ
¼

s

m0ðs2þ2znonsþo2
nÞ

(35)

from which it can be shown that 9HðjonÞ9¼ ð1=2m0znonÞ. This implies that 9HðjonÞ9 is inversely proportional to the modal
resonance frequency on. For a real girder, the damping ratio is generally small, so 9HðjonÞ9 is approximately the maximum
value of 9HðjoÞ9 for the nth mode. As on increases, 9HðjonÞ9 becomes smaller and smaller for a constant damping ratio; if
the condition limo-on 9GHðjoÞ941 cannot be guaranteed when +GHðjoÞ ¼ �p, the condition for the occurrence of self-
excited vibration will be breached; as a result, the closed loop system becomes stable. Therefore, in practice, the
self-excited vibration problem is mainly caused by the lower vibration modes of the girder. Since in most cases the self-
excited vibration is caused by the fundamental vibration mode of the girder, the current analysis is directed at suppressing
the self-excited vibration of the fundamental vibration mode.

3. Feasibility and stability discussion of applying a TMD to the coupled system

In the previous section, it has been shown that when the natural frequency of the sdof resonator is higher than the
critical frequency of the magnetic levitation system, self-excited vibration may occur. This suggests that if the critical
frequency of the levitation system can be increased so that the natural frequency of the sdof resonator is lower than the
critical frequency of the levitation system, the coupled system will become stable. However, the selection of the control
parameters is confined by Eqs. (26), (27) and (29); thus, it is not feasible to increase the critical frequency of the levitation
system by adjusting the control parameters only. Since the TMD has been widely applied in the vibration reduction of
structures such as tall buildings and bridges, the feasibility of applying a TMD to a maglev girder to suppress the self-
excited vibration will be explored here. A schematic of the scheme is shown in Fig. 3. For the purpose of the analysis, it is
initially assumed that the TMD is mounted at the same location as the electromagnet.
Electromagnet

my

0y

1m

0 L

x
y

Girder

ak ac

am TMDay

Fig. 3. Schematic of applying a TMD to the maglev girder.
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The dynamic equation of the TMD is

ma €yaþcað _ya� _y0Þþkaðya0þya�y0Þ ¼mag, (36)

where ya0 is the static displacement of the spring caused by the gravitational force associated with ma, and ya0 ¼mag=ka.
Let Fa denote the force of the TMD acting on the girder, then Fa ¼�ma €ya, and the transfer function of the TMD can be
written in the following form:

G1ðsÞ ¼
FaðsÞ

sy0ðsÞ
¼

masðcasþkaÞ

mas2þcasþka
: (37)

Taking the dynamics of the TMD into account, the block diagram of the closed loop system is shown in Fig. 4, in which
F0 is the resultant force acting on the girder.

Now let G(s) denote the transfer function of the forward path, then

GðsÞ ¼ G0ðsÞþG1ðsÞ: (38)

The feedback path, H(s), is positive real since Re[H(jo)]=0, 8o40. Therefore, if G(s) is strictly positive real, that is,
Re[G(jo)]40, 8o40 (which is also strictly passive for a linear, time invariant system), then the closed loop system will be
asymptotically stable since the negative feedback connection of any passive and strictly passive system is asymptotically
stable [16,17]. From Eq. (37), the real part of G1(jo) can be obtained as

Re G1ðjoÞ½ � ¼
m2

acao4

ðka�mao2Þ
2
þc2

ao2
: (39)

Combined with Eq. (30), the TMD parameters should satisfy the following inequality if G(s) is strictly positive real:

m1Zo2ðFikckd�m1L0o2Þ

ðZ�m1Ro2Þ
2
þo2ðFikckd�m1L0o2Þ

2
þ

m2
acao4

ðka�mao2Þ
2
þc2

ao2
40, 8o40: (40)

This is the only requirement for the TMD to stabilize the coupled system. Since there are three unknown parameters to
determine, the result is not unique. Given the parameters of the electromagnet and the girder, as well as the control
parameters, a group of TMD parameters can be chosen by trial and error before the system comes online. However, for an
adaptive levitation control system, the control parameters may be updated during operation, which requires the TMD
parameters to be updated according to the real time control parameters when the self-excited vibration occurs. Thus, a
procedure to calculate the TMD parameters is described in the paragraphs to follow.

Differentiating Eq. (39) with respect to o, and letting the result equal zero gives the center frequency of the TMD as

oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a

kama�c2
a

s
, (41)

which is approximately equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma

p
if the damping ratio of the TMD is sufficiently small. The value of Re[G1(jo)] at oa

is

Pa ¼
kama

2ca
: (42)

The bandwidth is an important parameter for the TMD. Here, the bandwidth is defined as the frequency band within
which Re[G1(jo)] is equal or greater than 0.5 Pa. It can be deduced from Eq. (39) that the frequencies corresponding to 0.5
Pa are:

ob1 ¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kama�c2

a�ca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kama�c2

a

p
c4

a�4c2
a kamaþ2k2

am2
a

s
(43)
0v

mF

aF

0F dF

G1 s

G0 s

H s

Fig. 4. Block diagram of the closed loop system with a TMD.
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and

ob2 ¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kama�c2

aþca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kama�c2

a

p
c4

a�4c2
a kamaþ2k2

am2
a

s
: (44)

Therefore, the bandwidth of the TMD is

BWa ¼ob2�ob1: (45)

When the damping ratio of the TMD is small, the result can be simply approximated as

BWa �
ca

ma
: (46)

Extensive simulations indicate that the TMD parameters can be determined by the following procedure:
(1)
Tabl
Para

Va

m1

z0

m0

A

N

g

R

kp

kd

kc
Determine the central frequency of the TMD, oa. This can be done by choosing oa to be the frequency corresponding to
the minimum value of Re[G0(jo)]. Using Eq. (30), oa can be obtained. As this is a difficult task, an empirical formula can
be employed to obtain an approximate solution:

oa ¼�52:188�8:8709� 10�3kpþ2:7532kd�1:4121� 10�2k2
dþ2:7449kc�0:0079424k2

c : (47)

Set Pa ¼ 4Re½G0ðjoaÞ�, and BWa=1.3(oa–oc).
(2)

Then the three parameters of the TMD can be calculated using the following equations:

ma ¼
2BWaPa

o2
a

, (48)

ka ¼o2
ama, (49)

ca ¼
2BW2

a Pa

o2
a

: (50)
For a full-scale, low-speed, maglev system, the parameters characterizing the electromagnet and the control parameters
are listed in Table 2. Using the TMD design procedure listed above, the corresponding set of TMD parameters are found to
be: ma=89.42 kg, ka ¼ 1:047� 106 N m–1, and ca ¼ 2554 N s m–1. For a SISO, linear, time-invariant system, the condition for
G(s) to be strictly positive real is equivalent to +G joð Þ 2 �p=2,p=2

	 

, 8o40. Fig. 5 shows the amplitude and phase

response of G(jo) with the compensation of G1(s), from which it can be seen that with the chosen TMD parameters, the
transfer function of the forward path G(s) is strictly positive real; therefore, the corresponding closed loop system is stable.

The stability of the closed loop system can be validated by numerical simulation. Assuming that the equivalent mass
and stiffness of the girder, which has been modeled as an sdof resonator, are m0=8000 kg, and k0 ¼ 1:0� 108 N/m,
respectively, then the natural frequency of the sdof resonator is 17.79 Hz. The critical frequency of the levitation system
can be calculated by Eq. (32), which is 13.44 Hz, and this is lower than the natural frequency of the sdof resonator.
Accordingly, the coupled system, as shown in Fig. 2, is unstable and self-excited vibration will occur. Fig. 6(a) shows the
response of the levitation gap, from which it is confirmed that the closed loop system is unstable. In contrast with Fig. 6(a),
Fig. 6(b) shows the response of the levitation gap when the designed TMD is mounted to the girder at the same location as
that of the electromagnet. It can be seen that the resulting closed loop system, which corresponds to Fig. 4, is
asymptotically stable. The simulation conducted here is based on the nonlinear dynamic model; in other words, the
dynamic model of the levitation system used in the simulation is Eqs. (3)–(5), (7), (8), and (19), rather than the linearized
model described by Eq. (21). The nonlinear simulation shows good agreement with the analysis undertaken using the
linearized model.
e 2
meters of the levitation system.

riable Value Unit
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0.008 m

4p�10�7 H m–1

0.02352 m2

320 –

9.81 m s–2

0.56 Ohm

4400 –

50 –

40 –
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Fig. 5. Frequency response of G(s) with compensation of G1(s): (a) magnitude–frequency response curves and (b) phase–frequency response curves. (—)

G0(s), (- - -) G1(s), (–) G0(s) + G1(s).
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Fig. 6. Closed loop response of the levitation gap: (a) levitation gap response without TMD and (b) levitation gap response with TMD mounted to the
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As shown by the inequality of Eq. (40), the selection of the TMD parameters is independent of the girder parameters,
provided that the TMD and the electromagnets are at the same location on the girder. Unfortunately, the requirement that
the TMD and the electromagnet are at the same location is hard to meet, since it is uncertain where the maglev train stops.
To overcome this problem, optimization process may be conducted to decide the best location where the TMD should be
mounted when the electromagnet is moving along the girder. However, this problem may also be solved by using the
virtual TMD scheme, which will be discussed in the next section.
4. Realization of the virtual TMD

The electromagnets in a maglev vehicle are excellent actuators that are capable of providing sufficiently large forces
acting on the girder to emulate the force of a TMD. However, several practical problems need to be taken into account
when designing the virtual TMD. First, the optimal structure of the virtual TMD must be determined; second, a means to
estimate the movement of a real TMD needs to be devised; and third, the problem caused by the actuation delay needs to
be solved.
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4.1. Structure of the virtual TMD

Observing the third equation in Eq. (21), it can be shown that the electromagnetic force is approximately proportional
to the current through the electromagnet around the equilibrium point. Hence, once the force, F̂a, that the TMD applies to
the girder is estimated, an additional current (which is referred to as iea) with an amplitude of F̂a=2Fi is required for the
electromagnets to generate the desired TMD force. Consequently, Eq. (8) becomes:

uðtÞ ¼ kc½ieðtÞþ F̂aðtÞ=2Fi�iðtÞ�: (51)

If the closed loop system is asymptotically stable, the steady-state current will be approximately the sum of ie and iea.
Eq. (51) also reveals that the capacity of a virtual TMD is constrained by the maximum output force of the electromagnet.
For an EMS maglev system, the electromagnet can only produce an attraction force. In a normal case, a constant attraction
force Fe, which corresponds to the load of the electromagnet, acts on the girder. Therefore, around the equilibrium point,
the maximum negative force that an electromagnet can provide is –Fe, which is the case when i=0. At this point, the
capacity of a single VTMD is mostly constrained by the load of the electromagnet. However, this is only the capacity for a
single levitation unit, and this capacity may be greatly extended when multiple levitation units are taken into account.

The state estimation of the TMD relies on the movement of the girder, which, however, is not easy to measure since it is
hard to find a sensor that could measure the movement of the elevated girder in the inertial space. Therefore, the real time
movement estimation of the girder at the location of the electromagnets is essential to enable successful use of the virtual
TMD. In a real maglev vehicle, two states, including the levitation gap, d, which can be measured by an eddy current gap
sensor, and the acceleration of the electromagnet, a1, which can be measured by an accelerometer, are available. From
Fig.1, it can be seen that y0 ¼ ym�d. Using the accelerometer and the eddy current gap sensor as inputs of the state
estimator, estimates of the displacement and velocity of the girder, which are represented as ŷ0 and _̂y0, respectively, can be
obtained by using the following estimator:

_x1 ¼�l1x1þam

_x2 ¼�l1x1þam

_x3 ¼ x2

_x4 ¼�l2x4þd
ŷ0 ¼ x3�l2x4

_̂y0 ¼ x2þl2x4�d

:

8>>>>>>>>><
>>>>>>>>>:

(52)

The estimator, which can be regarded as a filter, is always stable provided that l1 and l2 are both positive. The values of
l1 and l2 also determine the bandwidth of the estimator. According to the natural frequency, o1, of the sdof resonator the
parameters can be chosen asl1r0:1o1 and l2Z20o1. This estimator is capable of estimating the movement of the girder
whilst filtering out the DC bias mixed within the measured acceleration signal.

The block diagram of the closed loop system with estimator is shown in Fig. 7, in which the block EM represents the
electrodynamic Eqs. (3) and (4), GDR is the dynamic model of the girder, and EST is the state estimator which is described
by Eq. (52).

In some previous research which concerns the study of the virtual TMD, the dynamics of the actuator has been
neglected [9–11]. This may have been because the time delay caused by the actuator is sufficiently small that it has
little effect on the stability of the closed loop system. However, in the low speed EMS maglev system considered here, the
inductance of a single electromagnet reaches 0.1 H (the inductance is highly related to the air gap between the
electromagnet and the steel track; here the inductance is estimated around the desired levitation gap, which is 8 mm);
therefore, compared with the period of the free vibration of the girder, the electromagnetic force delay cannot be
neglected, and a procedure must be undertaken to compensate for the actuation time delay.
Fig. 7. Block diagram of the levitation system with the virtual TMD.
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In previous work where the actuation delay has been taken into account, several strategies have been applied to
compensate the stability of the system [13–15], as discussed in the introduction. However, none of these are applicable to
the maglev system. Since the self-excited vibration is approximately periodic, the phase of the feedback signal can be
adjusted by intentionally delaying the feedback signal for a certain amount of time, t1. If the actuation time delay, t0,
together with t1, equals the period of the vibration, then the additional force generated by the electromagnet should be in
phase with the estimated TMD force F̂a, and the effect of the actuation delay may be neutralized. This idea is sketched
in Fig. 7, in which e�t1s is the intentionally introduced time delay that is used for time delay compensation, and ga is the
gain of the feedback signal.

Taking the time delay in the virtual TMD feedback path into account, the simplified closed loop system is shown in
Fig. 8, in which b is the force gain, and b=ga/2Fi. Note that the time delay, t, in Fig. 8 includes both the actuation delay and
the intentionally introduced time delay. It shall be shown that there exist a series of time delays {tn} (n=1, 2,y) such that
the closed loop system is stable. To simplify the proof, it is first supposed that b=1. This is the case when the force of the
virtual TMD is fully fed back to the controller without amplification. Suppose that the original coupled system is unstable.
In this case, the natural frequency of the sdof resonator is higher than the critical frequency of the levitation system;
namely o14oc . Then:

+ G0ðjo1Þ½ � 2 �p,�
p
2

� �
: (53)

Since the designed TMD stabilizes the closed loop system, this suggests that

+ G0ðjo1ÞþG1ðjo1Þ½ � 2 �
p
2

,
p
2

� �
: (54)

On the other hand:

+½G1ðsÞe
�ts� s ¼ jo1

¼+½G1ðjo1Þ��to1

�� (55)

and

G1ðsÞe
�ts

�� ��
s ¼ jo1

¼ 9G1ðjo1Þ9,
�� (56)

therefore, if to1 ¼ 2np, or t¼ 2np=o1, then

G1ðsÞe
�ts

s ¼ jo1
¼ G1ðjo1Þ

�� (57)

and

+½G0ðsÞþG1ðsÞe
�ts� s ¼ jo1

¼+½G0ðsÞþG1ðsÞ� s ¼ jo1
2 �

p
2

,
p
2

� �
:

������ (58)

In Section 2, it was shown that +½Gðjo1Þ� 2 ð�p,�ðp=2ÞÞ is a sufficient condition for the occurrence of the self-excited
vibration, where G(s) is the feedforward path in Fig. 8. Therefore, Eq. (58) is a necessary condition for the stability of the
closed loop system, although it does not guarantee that the closed loop system will be stable. However, it demonstrates
that the closed loop system may be stabilized by adjusting the time delay of the TMD feedback path such that the total
actuation time delay matches one or more periods of the vibration. When the gain b is taken into account, the stability of
the closed loop system will be much more complex. However, it provides a strategy to extend the stability region of the
system, which will be discussed using the root locus method in the following section.

4.2. Stability analysis of the virtual TMD in the magnetic levitation system

From Fig. 8, the open loop transfer function can be written as

GHðsÞ ¼ ½G0ðsÞþbG1ðsÞe
�ts�HðsÞ: (59)

Substituting Eqs. (22), (23) and (37) into Eq. (59), yields

GHðsÞ ¼
D1ðsÞZm1s2þbD0ðsÞmas2ðmasþkaÞe�ts

D0ðsÞD1ðsÞDaðsÞ
, (60)
0v
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Fig. 8. Block diagram of the closed loop system when the time delay is taken into account.
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where D0(s), D1(s), and Da(s) are the denominators of G0(s), G1(s) and Ga(s), respectively. Therefore, the characteristic
polynomial of the closed loop system is

DðsÞ ¼ 1þGHðsÞ ¼ 1þ
D1ðsÞZm1s2þbD0ðsÞmas2ðmasþkaÞe�ts

D0ðsÞD1ðsÞDaðsÞ
: (61)

If s is a root of the closed loop system, then D(s)=0. This is a transcendental equation, and can be rearranged as

1þ
bD0ðsÞmas2ðmasþkaÞe�ts

D0ðsÞD1ðsÞDaðsÞþD1ðsÞZm1s2
¼ 0: (62)

If s=s+ jo is a root of the closed loop system, the angle condition gives

+½D0ðsÞmas2ðmasþkaÞ��+½D0ðsÞD1ðsÞDaðsÞþD1ðsÞZm1s2� ¼ ð2l�1Þpþto, l¼ 1,2,. . . (63)

and the magnitude requirement is

bD0ðsÞmas2ðmasþkaÞe�ts

D0ðsÞD1ðsÞDaðsÞþD1ðsÞZm1s2

����
����¼ 1: (64)

If t 4 0, there will be an infinite number of roots for Eq. (63). For comparison, the root locus of the closed loop system
when the time delay t=0 is shown in Fig. 9.

From Fig. 9, it can be seen that the closed loop system is stable when b=1. This is equivalent to the case when a real
TMD is mounted to the girder, and the stability of this case has been proven in the previous section. From Fig. 9(b), it can
also be seen that without the TMD (when b=0), the closed loop system is unstable, and that b=0.237 is the minimum gain
that stabilizes the closed loop system.

When the time delay is nonzero, the root locus of the system will be quite different. As mentioned earlier, there are an
infinite number of solutions that satisfy the phase condition of Eq. (63); therefore, the most significant difference of the
root loci with feedback time delay is that the number of root loci is infinite, and most of them will cross the imaginary axis
and reach the right half-plane as the gain increases. Fig. 10(a) shows the root locus of the system when t=0.01 s, from
which it can be seen that many additional root loci appear in the chart, and they tend to cross the imaginary axis as the
gain b increases. The root loci are calculated using the Newton–Raphson iteration method and are validated by
the gradient method [18]. Fig. 10(b) shows the detail of the region around the origin. The labels r1–r3 in the figure stand for
the root loci departing from p1 to p3, and r01 to r03 are the conjugates of r1–r3. Similarly, l1, l2 and l01, l02 in Fig. 10(a) represent
the additional root loci introduced by the time delay. It can be seen that r1 and r01 are the dominating loci when the time
delay is 0.01 s. They first cross into the left half-complex plane, and then turn to the right hand side as the gain b increases.
This indicates that there exists a stable gain range within which the closed loop system is stable.

However, r1 and r01 are not always the dominating loci as the time delay t increases. The stable gain boundaries for r1–r3

and l1–l3 are shown in Fig. 11(a), and the details around the t-axis are shown in Fig. 11(b). The other additional branches, l4,
l5y, are not plotted in the figure. It can be seen that only r1 has a lower gain boundary, but the upper gain boundary is
dominated by some other branches. From Fig. 11(b), it can be seen that the lower gain boundary and the upper gain
boundaries form a series of isolated triangles (the hatched areas in the figure); therefore, if t and b are chosen within these
triangles, the coupled system will be stabilized.

It can also be seen that the stable regions appear periodically as the time delay increases, and that the period of these
triangles, tc, is 0.056 s, which equals the period of the vibration, 2p/o1 (in the simulation, the natural frequency of the sdof
-800 -600 -400 -200 0
-400

-300

-200

-100

0

100

200

300

400

Im
ag

in
ar

y 
A

xi
s

Real Axis

-150

100

50

0

-50

-100

-20 -15 -10 -5 0 5
Real Axis

Im
ag

in
ar

y 
A

xi
s

1

0.237

Fig. 9. Root locus of the system when the time delay is neglected: (a) the overall root loci and (b) the local details of the root loci around the origin.



Real Axis

-800 -600 -400 -200 0 200

-1500

-1000

-500

0

500

1000

1500

Im
ag

in
ar

y
A

xi
s

150

100

50

0

-50

-100

-150
-20 -15 -10 -5 0 5

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig.10. Root locus of the system when the time delay is 0.01 s: (a) the overall root loci and (b) the local structure of the root loci around the origin.

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.160
τ (s)

1l 2l 3l

3l

2l

1l

r1
r2
r3
l1
l2
l3

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.160
τ (s)

0
100
200
300
400
500

-100
-200
-300
-400
-500
-600

0
5

10
15

-5
-10

-20
-15

Unstable
Region

c

Stable Regions

β
β

Fig. 11. Stable regions for the feedback gain in the presence of actuation time delay: (a) the overall view of the gain boundaries; and (b) detailed view of

the stable regions.

D.F. Zhou et al. / Journal of Sound and Vibration 330 (2011) 883–901 897
system, o1, is 111.8 rad/s, thus 2p/o1=0.056 s). This agrees well with our assumption that there exists a series of time
delays {tn} (n=1, 2y) such that the closed loop system is stable.

However, as the time delay increases, the height of the triangles becomes lower and lower, which indicates that the
allowed gain range decreases. Therefore, the most applicable time delay that can be used in the feedback path should be as



D.F. Zhou et al. / Journal of Sound and Vibration 330 (2011) 883–901898
small as possible. It has been shown that the period separating the triangles is

tc ¼
2p
o1

, (65)

which is the same as the period of the vibration. Suppose that the total time delay caused by the electromagnets is t0, then
to stabilize the system, an additional time delay, t1, can be intentionally introduced in the TMD feedback path such that
t0+t1 lies in one of the triangles shown in Fig. 11(b). To achieve this, the most suitable time delay t1 can be chosen as

t1 ¼ ðnþ1Þ
tc

2
�t0, n¼ Int

2t0

tc

� �
, (66)

where Int( � ) is a function that returns the integer part of a specified value. The integer number n indicates which triangle
t0 lies in, and Eq. (66) guarantees that t0+t1 corresponds to the center line of a triangle. This gives a maximum stable gain
range for b. On the other hand, from Fig. 11(b), it can be seen that setting b to be around 71 achieves the widest stable
range for the time delay; thus b can be chosen as

b¼ ð�1Þnþ1: (67)

Eqs. (65)–(67) guarantee that the selected time delay t1 is optimal, and the equations also make it possible for the
process to be implemented in a computerized controller, given that t0 and tc (or o1) can be estimated.
4.3. Procedure of designing a virtual TMD

As discussed above, once the period of the vibration, tc, and the time delay of the electromagnet, t0, are known, the
optimal additional time delay t1, and the TMD feedback gain, b, can be determined using Eqs. (66) and (67). For tc, a
knowledge base can be established if the frequency of the self-excited vibration on each girder along the maglev route can
be measured a priori. With the assistance of the absolute position detection system in a maglev vehicle, the position of the
vehicle can be determined; thus the vibration frequency can be retrieved from the knowledge base, and tc can be obtained
using Eq. (65). Alternatively, if the information of the vibration frequency along the route is not available, it can be
estimated online by several different methods that are normally used in spectral estimation problems, such as FFT, and
auto-correlation analysis. A simple zero crossing detector was applied by Elmali et al. [17], to calculate the vibration
frequency of the primary structure in the delayed resonator scheme. This method, although straightforward in
implementation, may be inaccurate when the signal–noise ratio is poor. Additionally, adaptive notch filters may be a good
choice for the frequency estimation [19].

The actuation time delay, t0, is not constant, but is variable and is related to the frequency of the self-excited vibration.
Therefore, a straightforward method of estimating t0 is to establish a table that stores t0 corresponding to different
vibration frequencies. This can be achieved by introducing a sinusoidal disturbance into the desired control current, ie, and
measuring the phase shift between the input disturbance and the acceleration of the electromagnets. For example, suppose
that the disturbance can be described as d(t)=A0 sin(2pfdt), where fd is the frequency of the disturbance, A0 is the amplitude
of the disturbance, and the acceleration response of the electromagnets is a1(t), which is approximately sinusoidal when A0

is small. Suppose that the phase lag from d(t) to a1(t) is j, then the actuation time delay can be obtained as: t0=j/(2pfd).
Given a series of disturbances at different frequencies, a series of time delays can be obtained, and a table of t0 vs. fd can
thus be established. This work can be done offline. Once tc or the frequency of the self-excited vibration has been obtained,
t0 can be retrieved from the table. Another method is to compute the cross correlation of ie(t) and a1(t), and to calculate t0

according to the maximum peak of the correlation. This method is applicable when the self-excited vibration is occurring.
In summary, the design procedure of the virtual TMD can be generalized as follows:
(1)
 Calculate the parameters of a real TMD that can render the levitation system to be positive real. The parameters can be
calculated using Eqs. (48)–(50).
(2)
 Estimate tc, which can be calculated according to the frequency of the self-excited vibration, which, in turn, can
be obtained through real time estimation or by prior knowledge using the position detection system.
(3)
 Estimate the actuation time delay, t0, which can be done by looking it up from a t0 vs. fd table. Alternatively, it can be
estimated online by calculating the cross correlation of ie(t) and a1(t).
(4)
 Use Eqs. (66) and (67) to determine the optimal additional time delay t1 and gain b for the TMD feedback path.
As the vehicle may stop at any location along the maglev route, the values of tc and t0 should be updated from time to
time, and the optimal time delay t1 and gain b should be updated accordingly. This can be done by repeating steps (2)–(4).
It should be noted that the proposed scheme is directed at solving the stationary vehicle–girder self-excited vibration;
therefore, when the vehicle is running at a relatively high speed, this algorithm will be switched off since in such a case, the
vehicle will pass through a girder within a short time, and the self-excited vibration is unlikely to occur.
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5. Numerical simulation

To verify the effectiveness of the proposed virtual TMD scheme, a numerical simulation has been undertaken.
The parameters of the magnetic levitation system are chosen from Table 2, and the TMD parameters are chosen to be the
same as in Section 3, which are: ma=89.42 kg, ka ¼ 1:047� 106 N m–1, and ca ¼ 2554 N s m–1. Since only the fundamental
mode of the girder is of concern, as discussed in Section 2, the model of the girder can be simplified as an sdof system. Here,
it is assumed that the equivalent parameters of the sdof system are: m0=8000 kg, k0 ¼ 1:0� 108 N m–1, and c0=0 N s m–1.
The parameters of the state estimator are chosen as l1=5, l2=2000.

According to the design procedure outlined at the end of the previous section, first the resonance frequency of the girder
is calculated, which is o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=m0

p
¼ 111:8 rad s–1, thus tc ¼ 2p=o1 ¼ 0:0562 s. As mentioned earlier, either a look up

table or real time estimation can be applied to get the actuator time delay. Here, a real time estimation method is applied
using the cross correlation of ie(t) and –a1(t). Here, the negative sign in front of a1(t) denotes that the direction of the virtual
TMD force acting on the girder, F̂aðtÞ, is opposite to a1(t). To reduce the computational effort, three circular queues
are applied to store the historical data of ie(t), –a1(t), and F̂aðtÞ, respectively. The length of a circular queue is such that it is
able to store up to 0.6 s of the latest data. The result of the correlation is stored in a buffer S, and is computed using the
following equation:

SðkÞ ¼�
XN

n ¼ 1

ieðnTÞa1½ðnþkÞT�, k¼ 0,1,. . .,K , (68)

where N is the total number of data samples in a single queue, T is the sampling period, and KT is the maximum time shift
that is expected. In Eq. (68), it should be noted that a1½ðnþkÞT� ¼ a1½ðnþk�NÞT�, if n+k4N. If the location of the first peak
that appears in S is at k0, then the time delay from ie(t) to a1(t) is k0T. Using Eqs. (66) and (67), the optimal time delay and
gain can then be calculated.

Fig. 12(a) shows the simulation result for the levitation gap. The virtual TMD and the time delay estimator have come into
operation once the simulation begins. However, for comparison, within the first 1.5 s, the feedback gain b is intentionally set equal
to zero, which is the case when the virtual TMD is deactivated. The stability of the coupled system without the TMD has been
discussed in Section 3, in which it was concluded that self-excited vibration will occur when the natural frequency of the sdof
system is higher than the critical frequency of the levitation system. The simulation confirms this conclusion, and it can be seen
that without vibration control algorithm, the amplitude of the vibration grows with time and it can lead to a levitation failure.

In the simulation, it is found that the first peak of the cross correlation appears at around 5.2 ms; therefore, t0=5.2 ms.
The first trough of the cross correlation appears at 32.4 ms, thus the period of the vibration is 2� (32.4–5.2)=54.4 ms,
namely, tc=54.4 ms. According to Eq. (66), it can be found that n=0 and t1=22 ms. Using Eq. (67), the gain of the TMD
feedback path can be determined as b=–1.

At the time mark of 1.5 s, the virtual TMD is activated by replacing the feedback gain b with the value calculated by
Eq. (67). It can be seen that the amplitude of the vibration attenuates quickly. Fig. 12(b) shows the estimated optimal time
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delay t1. Since the lengths of the circular queues are 0.6 s, at least 0.6 s is required to fill up the queues with measured data.
In addition, taking the transient response time of the levitation system into account, it is appropriate to activate the
estimation after 0.8 s. It can be seen that before the activation of the virtual TMD, the optimal time delay t1 estimated by
Eq. (66) is around 22 ms, and tiny ripples can be found in the t1 vs. time curve. This is mainly caused by the limited
precision of the cross correlation calculation. As the amplitude of the vibration dies away, the precision of the cross
correlation will become poorer and poorer, which may result in an incorrect estimation result. To avoid this problem, a
threshold, cc, is applied to the cross correlation, and updates of t0, t1, and b are only calculated and used when the peak
value of the cross correlation exceeds cc.

In the simulation, the cross correlation of ie(t) and –a1(t) shows that the time delay between them is about 5.2 ms.
Referring to Fig. 11(b), it can be found that the actuation time delay corresponds to the first positive triangle, which
suggests that without additional time delay in the TMD feedback path, the system should be stable if the gain of the TMD is
+1. This can be verified in the simulation.

Fig. 13 shows the response of the levitation gap when t1 is fixed to be zero, and b is set equal to +1. In this case, no
additional time delay is required, and the feedback is quite simple. It can be seen that under such a condition, the closed
loop system can also be stabilized, although the attenuation of the vibration is slower than that shown in Fig. 12(a).
However, as the resonance frequency of the girder changes, the actuation time delay also changes, and setting t=0 cannot
guarantee that the actuation time delay always lies in one of the stable regions. In this case, an additional time delay is
required to keep the total time delay within one of the triangles shown in Fig. 11.

In the discussion above, only the first-order vibration mode of the girder was considered. In fact, as long as the self-
excited vibration occurs at a single frequency, the scheme discussed above is still applicable, regardless of the order of the
unstable vibration mode. Fortunately, in practice, it has been found that the self-excited vibration that occurs in a low-
speed maglev system is mostly at a single frequency. However, when more than one unstable vibration modes of the girder
are taken into account, the behavior of the algorithm will become quite complicated, and two results are likely to be
obtained, depending on the techniques that are used to estimate the frequency of the girder. First, the algorithm
suppresses only one unstable mode, and the other unstable modes cannot be suppressed. This is the case when
the resonance frequency of the girder is retrieved from a knowledge base. Second, the algorithm may get confused and be
unable to determine the period of the vibration, thus failing to suppress either one of the unstable vibration modes. This is
the case when the real time estimation method is used. To suppress the coupled vibration caused by more than one
unstable vibration mode, multiple virtual TMDs and multiple frequency estimation methods are required, and this is a
subject that will be addressed in future work.
6. Conclusions

The coupled model of an EMS magnetic levitation system and a flexible girder has been analyzed and modal analysis
shows that the girder can be replaced by a series of sdof mass–spring resonators. Higher order vibration modes of the
girder have been neglected in the analysis since their equivalent mechanical impedances increase rapidly with the index
number of the order, and a single sdof resonator is employed as representative of a specified vibration mode of the girder in
the analysis. Using the Nyquist criterion, it is found that when the damping of the girder is neglected, self-excited vibration
may occur if the resonance frequency of the sdof system is higher than the critical frequency of the levitation system.
However, in the presence of girder damping, higher order vibration modes of the girder are unlikely to cause the self-
excited vibration.

The stability resulting from applying a TMD to the coupled system has been discussed, which shows that the TMD can
suppress to a large extent the self-excited vibration, if the parameters of the TMD are properly chosen. This conclusion is
based on the TMD being mounted to the girder at the same location as the electromagnet. This constraint is a handicap for
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the application of an actual TMD, but is not a problem for the application of the virtual TMD system discussed in this paper,
since the constraint is always satisfied for this case.

In the presence of actuation time delay caused by the inductance of the electromagnets, the stability of the virtual TMD
becomes complex to characterize. To explore the stability, the root locus of the system with a virtual TMD has been
examined and it was found that as the actuation time delay increases, there exists a stable gain region corresponding to the
time delay lying in some specific ranges. It was found that these stable gain regions have shapes similar to triangles, and
that the intervals between the triangles are the same, with the actual interval related to the vibration frequency. This
character enables the determination of the optimal time delay in the TMD feedback path if the frequency of the self-excited
vibration as well as the time delay of the actuator can be estimated. To achieve this, a scheme for estimating the frequency
of the vibration and the actuation time delay was proposed, using the cross correlation between the desired control current
and the motion of the electro magnet. A numerical simulation demonstrated the validity of the stability analysis, and also
showed that the proposed virtual TMD scheme is capable of suppressing the vehicle–girder self-excited vibration caused
by a single unstable vibration mode.
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